Virtual Engineering, Inc.

Engineering Your Competitive Edge...

Increase Arm Structure Stiffness Using FEA and Experimentation

Objective:

- o Customer wants to increase the stiffness, reduce "roll" of a 4-bar positioning arm
- Experimentally determine root cause of "roll" and best areas to target for improvement
- Offer design options, analyze options in FEA, and confirm results correlate with analysis

Constraints:

o Maintain exterior shape of all parts as well as materials and manufacturing processes

info@veng.com

Virtual Engineering, Inc.

Engineering Your Competitive Edge...

Increase Arm Structure Stiffness Using FEA and Experimentation

Process:

- Extensive measurement on the structure confirmed scenarios where displacements were most evident and pointed to the Upper Beams as the prime area of concentration
- Enventive analysis and FEA (in Creo Simulate) proved that required pivot clearances and the two-piece Upper Beam construction were significant contributors to the amount of roll
- O Designed an initial concept of a one-piece Upper Beam to replace the two-piece
- o Maximized material in the initial concept by matching the exterior profile and clearing the internal components by a minimum amount
- o This defined the maximum possible stiffness, but was not an efficient use of material
- Analyzed the current design and the initial concept in Creo Simulate to find and compare theoretical displacements and stresses
- Initial concept was fabricated and both designs were measured to find experimental roll
- o Found a positive correlation between experimental and theoretical (FEA) results
- A series of one-piece design variations were modeled and analyzed to find the best combination of low displacements, reasonable stresses, manufacturability, and weight

Results:

Achieved 63% reduction in displacements while increasing mass of the assembly by only 6%

	FEA Results
Proposal 6	1.5°
Proposal 6a	1.8°
Proposal 6z	1.4°
Proposal 7a	0.9°
Proposal 7b	1.1°
Proposal 7c	1.2°
Proposal 7d	1.3°
Proposal 7e	1.1°
Proposal 7f	1.2°
Proposal 7g	1.2°
Proposal 7h	1.6°
Proposal 7i	1.4°

Selected Option

Best for manufacturing

Good mass reduction

info@veng.com